菠菜导航网
主页 > 资讯分析 >
网站首页 >>

全球第一幅AI画作卖出了300万人民币,钱归谁?

五湖四海   新闻来源:网络整理    发布时间:2018-12-07 19:09   编辑:深爱不及久伴

在说今天的话题之前,大家先猜猜这幅画卖了多少钱?

全球第一幅AI画作卖出了300万人民币,钱归谁?

在公布答案之前,大家再看看其他画:

图片来自Wired,版权属于TOM SIMONITE

图片来自Wired,版权属于TOM SIMONITE

这些抽象派海景,如何?

全球第一幅AI画作卖出了300万人民币,钱归谁?

看得出上面这幅是什么吗?

要说这些画都有一个什么共同点的话,那就是:它们都是由人工智能作出来的!没错,AI 也能够作画了。而且这画的价格,还不一定比名画便宜....

不久之前,全球知名拍卖行佳士得进行了一项很有意思的拍卖,其中被拍卖的作品之一就是上面第一幅叫做 Edmond Belamy 的肖像画。

这个看起来像中世纪的男人,乍一看并没有什么特别。最初,佳士得对这幅画的期待也并不高,预计拍卖价格介于 7000 美元到 10000 美元之间。但没想到,最后竟然拍出了 43.25 万美元(快300万人民币啊……)!要知道,就在同时,佳士得拍出来的另一幅毕加索的画,也是差不多这个价格。当然,这可能是毕加索相对没有名气的画作了。

人工智能作画为何堪比名画价格?人工智能能作画了,这钱到底归谁呢?今天,小探就来跟大家说说,AI 作画的那些事。

AI 到底是如何作画的?大家不妨再认真看看,第一幅画上面有什么特别的?

全球第一幅AI画作卖出了300万人民币,钱归谁?

答案就在右下角。

按理说,不管是不是名画,一般都会有作者的落款。但是,为什么这幅画的右下角落款处,会是一行代码呢?

全球第一幅AI画作卖出了300万人民币,钱归谁?

事实上,这幅画的“作者”,就跟这行代码相关。

这幅由 AI 作出来的画,背后技术全称是“Generative Adversarial Networks (GAN)”,即“生成对抗网络”。

简单说,这个“生成对抗网络”是由两个相互博弈的神经网络构成的,一个是生成器(Generator),另一个是鉴别器(Discriminator)。这是由谷歌研究员 Ian Goodfellow 提出的。

生成器主要负责输入并生成数据,鉴别器则负责分析数据,区分这些数据是真实的(来自数据集),还是是虚假的(来自生成器)。

如此周而复始,一旦“生成器”成功骗过了“鉴别器”,让鉴别器认为生成的这张图像是真实的,一张属于人工智能所作的新画,就诞生啦!

打个简单比方,就好比妹子让男盆友拍照一样,拍得不好,重来;再来一张,稍微好一点,但不够完美,再重来,最后,只有通过妹子的鉴定,男盆友才算拍出一张妹子想要的照片...

在这个过程中,生成器一共被输入了从 14 世纪到 20 世纪之间绘制的超过 1 万 5 千张肖像数据集。当鉴别器无法区分这幅画到底是人手工完成的,还是通过计算机生成时,就完成了。现在大家看到的这幅新图像,是画作通过鉴别器后,在画布上印刷出来的副本。

可见,人工智能作画,并没有你想象的那么简单。因为机器也要自我学习,自我进步。

这幅画背后是一个叫做 Obvious 的法国组织,它是由三位 25 岁法国年轻人 Hugo Caselles-Dupré,Gauthier Vernier 和 Pierre Fautrel 组成的。其中,Hugo 是深度学习领域的博士候选人,研究方向是机器人强化学习,Pierre Fautrel 则是艺术背景。三位年轻人喜欢探索科技和新事物的结合,既然如此,为什么不尝试把人工智能跟艺术结合呢?

其实,Obvious 不仅仅“画”了这一张被佳士得拍卖的画,还“画”了整个家族的照片。Obvious 将系列命名为“La famille de Belamy”(Belamy 大致翻译为法语中的“好伙伴”,彰显对 GAN 算法的创造者 Ian Goodfellow 的致敬)。

全球第一幅AI画作卖出了300万人民币,钱归谁?

AI 作画?大公司也来掺一脚看到这里,大家可能会说,名画鉴别还是太难了啊。确实如此,那让你鉴别鉴别名人如何?

图片来自Facebook AI Research

图片来自Facebook AI Research

上面从左到右的图片中,你觉得哪些照片是真实的名人照片?哪些是 AI 生成的呢?

你可能又会说了,这里面我没有一个认识的啊,但,怎么又觉得那里似曾相识?比如,小探就觉得,中间那位咋感觉这么像贝克汉姆... 左二的女生则像碧昂斯...

那就对了。

因为,这上面的图片其实是英伟达利用生成对抗网络的成果之一。事实上,这些照片里的名人,都不是真正的名人,而是英伟达根据名人数据库,用 AI 生成的全部高清真实照片。

去年,英伟达就发布相关论文,阐述的是人工智能如何创造“虚假名人”的真实照片。听起来是不是很绕?其实,道理是一样的。就是生成器通过不断输入名人数据库,然后由鉴别器鉴定,生成器再改进输出,直到最后生成的这一组照片,骗过了机器的“眼睛”,认为他们是真人照片,就有了上面这一堆不存在、但又似曾相识的“名人”。

所以,这也迷糊了我们人类的双眼。

除了英伟达之外,像 Facebook 也围绕生成对抗网络进行了相关研究。只不过,他们把 GAN 变成了 CAN(Creative Adversarial Networks,创意对抗网络)。两者有什么区别呢?

顾名思义,在 Facebook 和美国罗格斯大学的研究人员看来,CAN 跟 GAN 相比,突出的是创意。因为 GAN 结构原本生成有创意产品的能力有限,更大程度上像是“模仿”。于是,研究人员们通过修改网络的目标,防止最后产生与原始数据过于相似的内容。这样,机器在训练的过程中,最大限度地偏离已经确立的艺术风格,从而创造出有创意的图像。

图片来自Facebook AI Research

图片来自Facebook AI Research

像上面这些抽象画,就是机器根据创意对抗网络生成的。唔,小探已经分不清这艺术作品是谁画的了。。。

不仅用人工智能创作画,Facebook 的研究人员还进行了跟踪试验,比较人在观看系统生成的图像和艺术家创作的画作的反应,是不是有所区别。

结果你猜。

如果你想让你朋友也知道这比赛情况,那就赶快点击以下分享出去吧!

相关阅读

注意:网上有诈骗.所有在本站刊登广告的网站和内容,一概与本站无关,请各位网友密切注意

Copyright @ 2018 www.1098999.com Inc.All Rights Reserved. 菠菜网站导航 版权所有